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1. Introduction 

Since metallurgical techniques have recently advanced, the continuous casting process has taken over as the 

primary way to make steel[1][2]. The advantages of continuous projecting, which include cost savings, high 

efficiency, and better quality, serve as the justification for this [3]–[28]. Numerous complex processes 

involving fluid flow, heat transport, and structural deformation are a part of the continuous casting process. 

The crucial component and method of continuous casting have been meticulously modeled and explored in 

references [3]. Steel producers are always looking for innovative, more productive manufacturing techniques 

in order to achieve efficient and effective output. The practice of optimizing through numerical modeling is 

one such technique that has grown in popularity. It describes the formation of the shell by solidification and 

the flow of molten steel [29]. Additionally, a detailed explanation of strand distortion caused by 

thermomechanical forces, bulging, bending, and crack prediction has been provided. There are a lot of potent 

pre-coded solvers on the market right now. In order to produce a high-quality product, numerical simulation 

of the thermo-mechanical behavior of the continuous casting process is crucial [4], [5], [15], [22]–[28]. The 

research work done in the last three[13], [20], [29]–[34] decades has made continuous casting an advanced 

and sophisticated technology[3], [35]–[37]. Physical water models that take into account the viscosity of water 

equivalent to steel can simulate the flow of molten steel in the mold region of continuous casting processes 

[38]–[42]. The highly non-linear constitutive laws of structure, the incorporation of latent heat, the presence 

of three different material states (liquid, mushy, and solid), temperature-dependent material properties, the 

irregular contact between the mold surface and solidified strand, and the coupling of the heat transfer and 

structure models with appropriate continuum mechanisms and boundary conditions are just a few of the 

challenges that must be overcome in this part of the simulation [43]. Reynold’s Averaged Navier– Stokes 

(RANS) method has been widely adopted for turbulence modeling. It has been reported that the RANS 

model is highly accurate in predicting steady-state flow patterns [24]. Several research works have been done 

on molten steel flow, heat transfer and solidification in mold[40]–[42], [44]–[46]. These studies have been 

established and validated with industrial trials[6], [35], [47]–[50]. From all previous studies, it is well 
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established that numerical models efficiently and accurately predict the fluid flow and mechanical behavior 

of mold and strand, respectively [38] [39]. The most adopted technique for simulating the solidification of 

continuous casting is the enthalpy-porosity approach [12], [14], [16], [17], [22], [24], [30], [51]–[55]. This 

method is based on a component called a liquid fraction. Numerous scholars have looked at this strategy, 

although the majority of them have only done 2D modeling. Although conduction, convection, and radiation 

are the three mechanisms of heat transport researched in the mold, their effects on the finished product and 

the potential for reducing any negative effects must be investigated. In order to present up-to-date knowledge 

on the numerical modeling of continuous casting processes, we examined and evaluated the literature. 

2. Heat transport and solidification equations 

The fundamental requirement of the continuous casting process is to solidify the strand to achieve plant set 

quality standards [3], [37], [56]–[64] Generalized heat transfer equation (3-dimension) can be written in the 

most suitable format from the above equations in the following manner[65] [13], [30], [31], [33], [52], [66]–

[79]; 

𝜌𝐶 (
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)  1 

 

In 2005, Louhenkilpi et al. proposed a three-dimensional transient formulation for temperature distribution 

over the mold wall. [80]; 

𝜌
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∂𝑥
(𝑘eff 
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∂
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2 

In a similar work, Zhao et al. (2005) [81] modeled energy equation along with the Navier-Stokes equation.  

∂𝑇‾

∂𝑡
+
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3 

 

𝑄𝑇𝑖 = 𝑇‾𝑢‾ 𝑖 − 𝑇𝑢̅̅̅̅ 𝑖  4 

     

∂𝑄𝑇𝑖

∂𝑥𝑖
=

𝜇𝑇

Pr𝑇

∂

∂𝑥𝑖

∂𝑇‾

∂𝑥𝑖
  5 

In 2011, Sowa and Bokota [82] proposed a heat flow model based on the Fourier-Kirchhoff system of 

equations. 

   𝜌𝑐 (
∂𝑇(𝐱,𝑡)

∂𝑡
+ ∇𝑇 ⋅ 𝐯) = ∇ ⋅ (𝜆∇𝑇) + 𝑄̇ 6 

 

Sowa and Bakota et al. [82] modified the above equation which includes effective specific heat (Ceff) term 

which is a function of the temperature of the material. 

∇ . (𝜆Δ𝑇) − 𝐶𝑒𝑓
𝜕𝑇

𝜕𝑡
− 𝐶𝑒𝑓∇𝑇. 𝑉 = 0  

 

7 
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𝐶𝑒𝑓(𝑇) = 𝜌𝐿𝑆𝑐𝐿𝑆 + 𝜌𝑆𝐿/(𝑇𝐿 − 𝑇𝑆)  8 

  

In 2011, Hadata et al., [45] proposed a steady Fourier-Kirchhoff model for heat flow with some assumptions.  

𝑞𝑣 = 𝑄𝑠
𝑑𝑉𝑠

𝑑𝜏
  9 

In a study in 1993 S.E.Chidiac et.at.,[64]used enthalpy approach for heat transfer in multi-dimensional 

problem with following equation. 

𝜌
∂𝐻

∂𝑡
= ∇ ⋅ (𝐾∇𝑇) + 𝑄  10 

 

where  indicates density, H indicates enthalpy, K indicates Thermal conductivity, Q indicates heat 

generation rate for unit volume, T indicates temperature and t time. Enthalpy is nothing but the summation 

of sensible & latent heat and can be expressed as: 

𝐻 = ∫ 𝑐𝑑𝑇 + 𝑓(𝑇). 𝐿
𝑇

𝑇𝑟
  11 

where c, f(T) and L are specific heat liquid fraction and latent heat.  For phase change study two methods are 

clubbed together with the above-stated formulation for accuracy and efficiency. Dirichlet & Cauchy boundary 

conditions are used to solve above equations. The study carried in 2003, B. wiwanapataphee et. al., [63] for 

simulating phase change cause of heat transfer single domain enthalpy method is adopted. Where enthalpy 

is the summation of latent heat (H) & sensible heat (h). 

H=h+H   12 

                             

Latent heat h can be given by 

 H=f(T)L,    13 

 

Where L denoted Latent Heat of Steel L and f(T) indicates localized liquid fraction where value one 

represents complete Liquids state and zero represents the complete solid-state. The liquid fraction is 

nonlinear for simplification of the model it is assumed linear. 

𝑓(𝑇) = {

0, 𝑇 ⩽ 𝑇𝑠
𝑇−𝑇𝑠

𝑇L−𝑇s
, 𝑇s < 𝑇 < 𝑇L,

1, 𝑇 ⩾ 𝑇L,  (XX)

  

 

14 

wherein TL indicates melting temperature and TS Solidification temperature 

For region where phase change occurs conservation of energy principle. Combining this equation with 

enthalpy gives, 

   𝜌𝑐 (
∂𝑇

∂𝑡
+ 𝑢𝑗𝑇,) = (𝑘0𝑇𝑗)𝑗 − 𝑆𝑇  15 
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Ivanova (2013) [83] formulated extensive mathematical modeling on predicting phase-dependent boundary 

conditions.  

∂𝑇

∂𝑟
+ 𝑣(𝑡) ⋅

∂𝑇

∂𝑧
=

1

𝑐(𝑇)𝜌(𝑇)
×

 × {
∂

∂𝑥
[𝜆(𝑇)

∂𝑇

∂𝑥
] +

∂

∂𝜕𝑧
[𝜆(𝑇)

∂𝑇

𝜕𝑧
]}

  

16 

 

The position of the unknown phase boundary is specified by the equality condition of the temperatures and 

the Stefan condition for the two-dimensional case: 

𝑇 = 𝑇(𝜏, 𝑥, 𝑧)|𝑥=𝜉_(𝜏,𝑧)=𝑇(𝜏, 𝑥, 𝑧)|𝑥=𝜉+(𝜏,𝑧)=𝑇𝑐𝑟  17 

 

𝜆(𝑇)  
𝜕𝑇

𝜕𝑛̅
|𝜉+ −  𝜆(𝑇)

𝜕𝑇

𝜕𝑛̅
|𝜉− =  𝜇𝜌 (𝑇𝑘𝑝) (

𝑑𝜉

𝑑𝜏
+ 𝑣(𝜏)

𝑑𝜉

𝑑𝑧
)  

 

18 

where 𝜉 is the phase boundary 𝑥 = 𝜉(𝜏, 𝑧), 𝑛‾  is a normal to the phase boundary, 
∂𝑇

∂𝜋
|
𝜉+/−

 is the left-right limit 

of the temperature derivative in the normal direction. 𝜇  is the latent 

the heat of crystallization. 𝑇𝑐𝑟  is the crystallization temperature (the average temperature from the liquidus-

solidus interval). 

In 2014, Zhang et al [84] investigated a steady-state two-dimensional numerical model based on the 

assumption of heat transfer. 

𝜌 = (1 − 𝑓S)𝜌L + 𝑓S(𝑓𝛿𝜌𝛿 + 𝑓𝛾𝜌𝛾)
  

19 

𝜆 = (1 − 𝑓S)𝜆L + 𝑓S(𝑓𝛿𝜆𝛿 + 𝑓𝛾𝜆𝛾)  20 

𝑐eff = 𝑓S ⋅ 𝑐S + (1 − 𝑓S) ⋅ 𝑐L − 𝐿
∂𝑓S
∂𝑇

 

 

21 

In a similar work, Maurya and Jha (2014) [85] investigated the effect of casting speed in the continuous casting 

process.  

𝜌
∂𝐻

∂𝑡
+ 𝜌∇ ⋅ (𝑢𝐻) = ∇(𝑘𝑒𝑓𝑓∇𝑇) + 𝑄ℓ    

22 

Where  is density, H is enthalpy, H is sensible heat, QL is source term. QL can be expressed as a single 

solidification model and given as; 

𝑄𝐿 = 𝜌𝐿
∂𝑓𝑠

∂𝑡
+ 𝜌𝐿𝑢‾𝑝𝑢𝑙𝑙 ⋅ ∇𝑓𝑠  

 

23 

∂

∂𝑥𝑖
(𝜌𝑢𝑖) = 0  24 

Naiver-Stokes equation for transient momentum conservation is given by 
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∂

∂𝑡
(𝜌𝑢) + 𝜌∇(𝑢𝑢) = −∇𝑃 + ∇{𝜇𝑒𝑓𝑓(∇ ⋅ 𝑢)} + 𝜌 + 𝑆               (XX)  

 

25 

where, 

eff= l +t                                                                                         

Maurya and Jha (2014) [85] and Hitanen  et al. (2017) [86] used the enthalpy-porosity technique for 

solidification.  

𝑆 =
(1−𝛽)2

(𝛽3−𝜉)
𝐴mush (𝑢‾ − 𝑢‾pull )  

26 

where, liquid fraction is expressed as β, ξ = 0.001, mushy zone constant is given as Amush. 

Pilvi et.at., (2017) [65] Used turbulent flow modelling at inlet in which they considered hydraulic diameter at 

inlet.  

𝜆𝑒 = 𝜆𝐿𝐿(1 + 6(1 − 𝑓𝑠)
2  27 

 

In 2016, Hibbeler et al. [87] proposed an innovative reduced-order model (ROM) for heat transfer from 

mold in the continuous casting of steel.  

0 =
∂2𝜃mould 

∂𝑥∗2
+ (

𝑑mould 

𝑤mould 
)
2 ∂2𝜃mould 

∂𝑦∗2
+ (

𝑑mould 

ℓmould 
)
2 ∂2𝜃mould 

∂𝑧∗2
  

28 

Vnnyscy and Saleem (2017) [88] formulated a mathematical formulation for explicitly calculating the 

geometrical range of the mushy zone.  

𝜌𝑐p𝑉cast
∂𝑇

∂𝑧
=

∂

∂𝑦
(𝑘

∂𝑇

∂𝑦
) +

∂

∂𝑧
(𝑘

∂𝑇

∂𝑧
) − 𝜌𝑉castΔ𝐻f

∂𝜒

∂𝑧
  29 

where 

𝑘 = 𝜒𝑘1 + (1 − 𝜒)𝑘𝑠 

𝑐p = 𝜒𝑐pl + (1 − 𝜒)𝑐ps 

A decoupled three-dimensional mathematic model of fluid flow and heat transfer in continuous casting billet 

mould was developed by An et al., (2018) [89].  

∂

∂𝑡
(𝜌𝐻) +

∂

∂𝑥𝑗
(𝜌𝜇𝑗𝐻) =

∂

∂𝑥𝑗
[(𝜆 + 𝐶𝑝

𝜇𝑡

𝜎𝑡
)
∂𝐻

∂𝑥𝑗
]  

30 

Ole Richter et al. (2017) [90] studied the development of free surface flow for the liquid and/or solid phase 

change. They considered enthalpy-porosity and volume-of-fluid (VOF) method.  

𝛼1 =

{
0 =  gas 

0 < 𝛼1 < 1 =  cell contains the interface 

1 =  solid or liquid PCM 

  

35 

 

The molten  steel fraction was completely dependent on the thermal condition (T) of liquid metal. TS and 

TL indicates same respectively. This can be expressed as follows[90]; 
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𝛾1,𝑙 =

{
 

 
0  if 𝑇 < 𝑇𝑆
𝑇 − 𝑇𝑆
𝑇𝐿 − 𝑇𝑆

 if 𝑇𝑠 ≤ 𝑇 ≤ 𝑇𝐿 .

1  if 𝑇 > 𝑇𝐿

 

31 

Where one indicates complete liquid state and zero indicates complete solid state. In between values of solid 

fraction indicates mushy zone. 

In the given formulation the density ρ, the heat capacity cp, the heat conduction  and the viscosity μ can be 

expressed as follows; 

𝜌 = 𝛼1(𝛾1,𝑙𝜌1,𝑙 + 𝛾1,𝑠𝜌1,𝑠) + 𝛼2𝜌2  32 

𝑐𝑝 = 𝛼1(𝛾1,𝑙𝑐𝑝1,𝑙 + 𝛾1,𝑠𝑐𝑝1,𝑠) + 𝛼2𝑐𝑝2  33 

𝜆 = 𝛼1(𝛾1,𝑙𝜆1,𝑙 + 𝛾1,𝑠𝜆1,𝑠) + 𝛼2𝜆2  34 

𝜇 = 𝛼1𝜇1,𝑙 + 𝛼2𝜇2  35 

          

In above equations, the subscripts [ ]1,l, [ ]1,s and [ ]2 illustatre the property of the bulk liquid, solid and gas 

phase, respectively. In order to consider natural convection in  proposed numerical formulation, the 

Boussinesq approach was used. Further, the buoyancy modified density ρb can be defined as;  

           𝜌𝑏 = 𝛼1(𝛾1,𝑙𝜌1,𝑙(1 − 𝛽(𝑇 − 𝑇𝐿)) + 𝛾1,𝑠𝜌1,𝑠) + 𝛼2𝜌2  36 

 

3. Conclusions 

Recently, Chen et al. (2019) [91] investigated the mold level fluctuations. These fluctuations are caused by 

transient bulging of the solidifying shell. Consequently, transient bulging phenomenon affects the quality of 

the steel. They developed a 1D and 2D model for strand simulation. They reported that mold level 

fluctuations are highly caused by dynamic bulging. Several constitutive models have been adopted for 

simulating the solidification stresses using the simple elastic-plastic models [92][93]. Many literatures have 

reported about strand bulging between rolls which have caused transverse cracks, radial streaks and centerline 

macrosegregation [6], [7], [94]. Risso et al. [95] evaluated the thermal stress and strain in the solidifying shell 

of the strand by using the analytical method. Researchers added a separate creep model for transient 

modeling [96]. The integration of these transient constitutive laws and further, mathematical modeling is a 

challenging task. From all the above discussion it is observed that the temperature and stress-strain 

distribution in the strand region of the continuous casting process plays an important role in defining the 

quality of the final solidified product[43], [97]–[99]. A numerical model was presented by Fachinotti et al. 

(2006) [94]to study the macro-segregation defects in strand caused by thermal stress. They made a hypothesis 

about the transient effect of alternate rolling and bulging. To measure surface temperature and shell thickness, 

finite point method was used by Alizadeh et al. [5]. They compared FPM results with FVM results. It was 

concluded that heat transfer, surface temperature, and shell thickness can be successfully modeled by FPM 

method. In 2006, Liu and Zhu [100] developed a three-dimensional finite-element heat-transfer and thermal 

stress models to study the thermo-mechanical distortion on the slab during operation. They reported that 

operating parameters i.e., casting affected the strand distortion in copper walls of the mould. Pascon and 

coworkers (2006) [101] studied the generation of transverse crack during bending and straightening of strands.  

The numerical model was applied and validated with industrial data. The transverse cracks were found at the 

upper face of the strand.  
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