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1. Introduction 

The Land model encompasses modelling of the 

contraction of the cardiac muscle, based on the 

evaluation of the development of tension in 

cardiomyocytes in human heart muscle; it was 

developed by Land et al [1] using experimental data. 

The Land model entails tropomyosin kinetics, troponin 

C kinetics, the cellular viscoelastic response and a three-

state cross-bridge model which accounts for the 

distortion of cross-bridges. It was parameterized using 

diff  t experimental data obtained in human 

cardiomyocytes at the physiological body temperature, 

including the passive and viscoelastic properties of 

isolated myocytes, the steady-state force calcium 

relationship at diff t sarcomere lengths along with 

changes in tension following a rapid increase or decrease 

in length, after constant velocity shortening, and dynamic 

changes in tension generation during length 

perturbations in isolated myocytes.[2-8] 

 

There was a lack of experimental data from human 

cardiac myocytes at the physiological body temperature 

for quantitative understanding of clinically relevant 

cardiac function and development of whole-organ 

computational models. Specifically, important 

measurements to characterize changes in tension 

development in human cardiomyocytes that occur with 

perturbations in cell length were not available. To 

address this deficiency, they presented an experimental 

data set collected from skinned human cardiac myocytes. 

This data set used in the Land model is the fi 

characterization of length and velocity-dependence of 

tension generation in human skinned cardiac myocytes 

at body temperature. [9-17] 

 

In this work, we will use the Land model to study 

the human myocyte contraction in detail, and in 

particular how different parameters affect myocyte 

contraction behaviors. First, we introduce the passive 

viscoelastic model, then active tension model which 

includes thin Filament kinetics, the cross-bridges model 

and active tension model. We will then examine the 

Land model and the relevant parameters that Land et al 

used to establish the behavior of the cardiac muscle. 

  

2. Passive Viscoelastic Model 

The passive viscoelastic model of the human 

cardiac myocytes was developed by analyzing the unique 

viscous response of the myocytes. This unique viscous 

response results from the molecule titin, which is part of 

the contractile apparatus of the cardiac muscle. It is 

assumed that the passive response is independent of 

other experimental data on active tension presented in 

this model. 

 

In Land’s experiments [13], the viscous component 

represented 44±5% of total passive force, and 75% of this 

force decayed within 92±24 ms. On shortening, the 
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viscous response is significantly lower, potentially due to 

a much faster decay rate and recovery during the 

duration of the shortening step. The passive response 

was modelled using a three- parameter model similar to 

a standard linear solid, consisting of a dashpot and spring 

in series, in parallel with another spring, as shown in Fig. 

1. This model was chosen for its simplicity and its ability 

to capture the passive and viscoelastic response. To 

reproduce the typical exponential force-length 

relationship seen in previous experiments in isolated 

cells and cardiac tissue, the parallel spring. 

F1 = a(e
bc 

− 1) 

has an exponential stress-strain relationship and: 

 

F2 = akCs, 

is a linear spring. 

 

The active contractile element TA is introduced in 

later sections and has zero stiffness when the myocyte is 

not in an active contraction state. The dashpot element 

Fd (see fi 4.1) has separate parameters for shortening 

and lengthening to accommodate the diff in viscous 

forces observed. 

 

 
  

This can be understood in analogy to electrical 

circuitry. Two elements in series have the same forces, 

which are F2 = Fd in our case (passive viscoelastic 

model), and the total strain (C) is the sum of two strains 

which are: 

C = Cs + Cd,  

where Cd is the strain of dashpot and Cs is the strain 

of spring. This yield; 

 

 
 

This represents the total force of the viscoelastic 

element (titin) as a function of the strain 

(C) (or extension ratio, λ = SL/SL0.) C and λ are 

related through SL 

  

 
  

 

 
 

Figure 1: Schematic illustration of the myocyte model. 

F1 is the parallel elastic element, F2 is the series elastic 

element, Fd is the viscous dashpot element, and TA is 

the active contractile element, cited from [13]. 

 

Furthermore,  

 

 
 

 
  

 

where s is for shortening and l for lengthening. 

 

3. The Active Tension Model 

The force generating apparatus of the cell consists 

primarily of two types of fi ts, thick fi    ts and thin fi    ents. 

Thin filaments are composed of actin, tropomyosin, and 

troponins, including troponin C and troponin I. Thick fi 

ments are made up of myosin cross-bridges. Active 

tension is generated by myosin cross-bridges attaching to 

binding sites on actin on the thin fi t, and then 

performing a power stroke. cross- bridges consist of a 

head region, which rotates during a power stroke, and a 

tail region (the neck region of the myosin molecule) 

which is distorted. The restoring forces on the spring-

like tail are responsible for force generation. As the fi  ts 

slide past each other, the distortion of the cross-bridges 

tail ,which is generated by the power stroke is reduced, 

generating less force. By detaching, returning to their 

resting length, and re-attaching to a new binding site and 

once again performing a power stroke, cross-bridges 

restore their maximal force generating ability. 

 

  

 
 

Figure 2: Cross-bridge dynamics during active 

contraction, cited from [13]. 

  

4. Thin Filament Kinetics 

Figure 4.2 describes the cross-bridge dynamics 

during active contraction, in which B represents the 

blocked state, which means Troponin and Tropomyosin 

cover the active site on actin (i.e., myosin head cannot 

bind to the active site on actin). In the resting state, 
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tropomyosin, which winds helically around actin on the 

thin fi t, satirically blocks the binding sites for myosin on 

actin. It is held in this ‘blocking’ position by troponin I, 

another thin fi ment protein. When the cell is electrically 

activated, the calcium concentration rises. Calcium ions 

Ca2+ from the cytosol bind to the regulatory binding site 

on troponin C. This causes troponin C to open a binding 

pocket for troponin I, causing troponin I to 

preferentially move away from holding tropomyosin in 

the ‘blocked’ position U, with U is an unbinding state 

which means the active sites on actin are uncovered, 

allowing cross-bridges to bind (i.e., myosin head -binds 

to the active site on actin and forms a cross-bridges, W). 

W is the pre power stroke state which means the myosin 

head moves at the hinge region (powers stroke state) 

causing the actin to slide past the myosin. ATP binds to 

the myosin head causing the myosin head to release the 

actin, with everything going back to the initial state (post 

power stroke stage, S) and generating tension. 

Furthermore, ζw and ζs are the mean distortions of the 

cross bridges in the weak and strong states respectively. 

 

The kinetics of filaments are described by the 

interaction between various elements such as calcium 

ions, troponin C, troponin I and tropomyosin to regulate 

availability of myosin binding sites on actin. Activation of 

the thin filaments shows highly cooperative behavior, 

with small changes in intracellular calcium leading to 

potentially high changes in force. The main biophysical 

reason for this behavior relates to the end-to-end overlap 

of tropomyosin molecules. A simple and 

phenomenological representation of cooperative 

activation is chosen, as it is better suited for applications 

in multiscale modelling. The dynamics of calcium ions 

binding is 

 

  
 

in which [Ca
2+

]i is the intracellular calcium 

concentration. [Ca
2+

]T50 is the concentration of calcium 

required to bind 50% of troponin. Equation 4.2.1 can be 

solved analytically, with the following method: For 

simplicity we write CaT instead of CaTRPN. We 

assume [Ca
2+

]i is a constant and independent of time, 

then we can state; 

  

  
So 

  
 

with N being a constant. 

  

Using the initial condition t =0 then: 

 
 

 
 

 
 

• If [Ca
2

+]i > [Ca
2

+]T50 then a > 1 and still 0 < N < a, so 

the corresponding time course of CaTRPN is shown in 

Fig. 4. 

CaTRPN represents the fraction of troponin C 

units with calcium bound to its reg- ulatory binding site. 

The parameter kTRPN = 0.1/ms represents the 

unbinding rate, nTRPN = 2, which is the cooperativity 

of the calcium-troponin C binding rate. The parameter 

[Ca2+]T 50, which describes the half-activation point, is 

not consistent between species. The troponin 

concentration CaTRPN drives the unblocking of 

tropomyosin, as represented by the fraction of blocked 

myosin binding sites on actin, denoted by B: 

  

 
  

 

 
 

Figure 3: Diagram of CaTRPN for an arbitrary choice of 

parameters, when 0 < a < 1. 

 

 
 

 

Figure 4: Diagram of CaTRPN for an arbitrary choice of 

parameters, when a > 1. 

  

where kb and ku represent the transition rates for B 

and U states respectively. Equation.4.2.11 is not simple 
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to solve analytically because it depends on the two 

variables U and B. 

The states included the fi 4.2 entail the blocked state 

B, the unbound cross-bridges state U, the pre-power 

stroke state W and the force generating state S. Both the 

states ‘W’ and ’S’ in the fi have an additional state, 

keeping track of the mean distortion of cross-bridges in 

this state. Calcium binding to troponin C drives the 

transition between states ‘B’ and ‘U’. 

 

5. The Cross-bridges Model 

The cross-bridges model for the generation of force was 

developed using a three-state cycle of the cross-bridges 

with unbound (U), pre-power stroke (W) and post-

power stroke (S) states, as well as a model of the 

distortion decay that traces the average distortion of the 

cross-bridges in the pre-power stroke (W) and post-

power stroke (S) states, as shown in Fig. 2: 

 
 

Above equation is obtained from the conversion of 

different states shown in Fig. 2. 

 

 
 

The parameters γsu and γwu represent the cross-bridges 

unbinding rates in the pre-power stroke (W) and post-

power stroke (S) states provided by a model of distortion 

decay. The distortion decay model is given by: 

 
 

in which, Aw and As relate to the magnitude of the 

instantaneous response to distortion and cw and cs relate 

to the decay rate of distortion. All variables with the 

subscript ‘w’ relate to the pre-powerstroke state W, and 

variables with the subscript ‘s’ relate to the post-

powerstroke state S. The variable λ indicates the cell 

length relative to the resting length, in Land’s model. It 

is further assumed that the cross-bridges bind with no 

dis- tortion in the pre-powerstroke state. In addition, the 

cross-bridges do not maintain the distortion when 

transitioning from W to S states with ηs = 0, indicating 

the absence of additional distortion to that particular 

power stroke. 

  

In the absence of changes in the length of the cells, 

ηw = ηs = 0. The total tension during active contraction 

is given by: Ta= number of crossbridges ∗ cross-bridges 

stiffness ∗ powerstroke ∗ distortion ∗ S. When distortion 

in both powerstrokes is considered, the total tension is 

given by: 

Ta = (ζs + 1)S + ηw W.  

 

In a cycle of reactions, such as in our cross-bridges 

model, it is typically easier to parameterize based on the 

steady-state occupation of states and an overall rate of 

cycling, which govern both forward and backward rates. 

The steady-state occupation can be more easily 

constrained using a prior or fi value, as it is less species-

dependent, while the overall rate of cycling governs the 

kinetics of tension development and is likely to vary 

significantly between species. Thus, the following 

defined are introduced: 

• rs - steady-state duty ratio S/(U+W+S) 

• rw - the steady-state ratio between pre-powerstroke 

and non-strongly bound = steady-state W/(U+W) 

 

TRPN50 = value of CaTRPN, where B=0.5 in steady 

state. 

 

The above defined values help to parameterize the 

model, because it is easier to provide a good initial 

estimate for rs, rw and TRPN50. Assuming that rs=0.25, 

TRPN50 = 0.35 and rw = 0.5, then the derived 

parameters used in the model equations are given by: 

 

 
 

In equation 4.2.16, the magnitude of instantaneous 

distortion in the W and S states is assumed to be equal 

because they reflect the distortion induced by relative 

movement of the filaments, 

Assuming the distortion decay rates to be proportional 

to steady-state cross-bridges cy- cling rates: 

 

 
 

Basically, there are four states that include Blocked, 

Unbound, Weak and Strong. These are all possible 

states of the cross-bridge. The Weak and Strong states 

diff from the other states in that have a mean distortion 

associated to them, ζw and ζs. Therefore, this model 

explains the changes of the four states, as well as the 

changes of the mean distortion. 

  

6. The Length-Dependence of Tension 

Another key aspect of tension generation in the 

heart is the increase in generated force with an increase 

in myocyte length. At the organ level, this phenomenon 

gives rise to the ‘Frank-Starling’ effect [13], where an 

increase in end-diastolic volume leads to an increase in 

the volume of blood ejected, ensuring a balance of fl w 

in and out of the heart. The molecular mechanisms 

underlying these effects have not been fully resolved. 

Land et al [13] assumed that the phenomenological 
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model represented the cellular effects that are defined 

by a shift in the intracellular calcium sensitivity and an 

increase in the maximum tension that is produced with 

length, as shown below: 

  

 
in which, the parameter β0 represents the change in 

maximal tension; based on changes in fi t overlap, and 

β1  captures the change in calcium sensitivity.  Therefore, 

the total active tension of the complete model is given by: 

 

 
  

where Tref is the maximal active tension at resting 

length. 

 

Length dependency encompasses the interactions 

between the length and calcium and cross-bridges 

dynamics during the contraction process. The process of 

crossbridge activation tends to increase with an increase 

in the length of the sarcomere during the contraction 

process in the cardiomyocytes. Theoretically, the 

increase in the cross-bridges activation due to increased 

length could result from the increase in the number of 

cross- bridges attached or cross-bridges strain. In 

addition, the number of cross-bridges tends to increase 

with an increase in the rate of cross-bridges attachment. 

In this case, a lower cross-bridges detachment rate or an 

increase in the calcium concentration in the sarcoplasm 

could also contribute an increase in the activation of the 

cross-bridges. The concentration of calcium is however 

independent of the length of the sarcomeres [3]. 

 

Changing the length of the sarcomeres has effects 

on the rate of attachment and de- tachment of cross-

bridges to the activated and exposed binding sites on the 

actin. As a muscle fi er does not gain or lose volume as 

it changes length, the fi er must have a larger diameter 

when it is at a shorter length [21]. The hexagonally 

packed lattice of myofilaments in each sarcomere will 

then be more widely spaced, changing the distance 

between the myosin heads and the thin fi ts where they 

must bind to form cross- bridges [18]. The heads are 

located on the ends of hinged arms containing myosin 

light chains, which are canted away from the longitudinal 

axis of the thick fi ment. When the sarcomere is at a long 

length, the myosin heads barely fi between the thick and 

thin fi       ts, so they are close and can bind rapidly to 

form cross-bridges. 

 

The short distance between the myosin heads and 

actin binding sites also increases the strength of the 

actomyosin bond, which would reduce the probability of 

cross-bridges detachment. At short lengths, the myosin 

heads are less favorably disposed, and their binding may 

also be affected adversely by the double-overlap of the 

thin fi ts [2]. These effects are particularly significant at 

lower levels of activation, where activated binding sites 

are scarcer on the thin filaments [13]. The total result is 

indicated in Fig. 5, which is based on models and data 

from existing literature. 

 

 
 

Figure 5: Length Dependence of Cross-bridge 

Activation, cited from [2]. 

 

 

 
Figure 6: Isometric contraction with stretch ratio λ = 1.0, 

using prescribed intracellular calcium transients. 

 

The activation of the cross-bridges is measured as a 

percentage of the maximum tension generation for a 

specific amount of overlap of the myofilament. The 

change in sarcomere length also infl the kinetics of 

calcium which control activation and con- traction in the 

cardiac muscle. The cisterns from which the calcium is 

released appear to be tethered to the Z-plates at a 

location near the middle of the actin-myosin overlap 

when the muscle is at optimal length. Calcium tends to 

diff over long distances at longer lengths to reach the 

actin binding sites [21]. In this case, the rise periods of 

the contraction are longer in calcium activation [13]. In 

addition, the rate of cross-bridges attachment increases 

while the rate of detachment decreases proportionally 

with the length of the sarcomere. 

 

7. Results 

The Myocyte model is implemented in MATLAB 

and solved using an ode15 solver with adaptive time 
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stepping. An, ode-15 solver was chosen because the 

mathematical model is stiff. A problem is said to be stiff 

if the solution being sought varies slowly, but there are 

nearby solutions that vary rapidly, so the numerical 

method must take small steps to obtain satisfactory 

results. This model demonstrates stiffness. The syntax 

for ode-15 is, [t,y] = ode15s(odefun,tspan,y0), where 

tspan = [t0tf ].The solver integrates the system of diff     

tial equations y=f(t,y) from t0 to tf with initial conditions 

y0. Each row in the solution array y corresponds to a 

value returned in column vector t. MATLAB code was 

provided by Dr. Hao Gao, and is adopted from [13]. 

 

 
Figure 7: Effects of the calcium parameter on the tension 

in the cardio myocytes for an isotonic experiment. 

 

We  examine the isometric contraction with stretch 

ratio λ = 1.0, using prescribed intracellular calcium 

transients shown in Fig. 6(a). Fig. 6(b) is the 

corresponding developed tension. Active tension 

increases with increased Ca2+, and reaches the peak 

tension (50kPa) at 220ms, while Ca2+ reaches peak at 

120ms, which is earlier than the peak tension. After 

reaching the peak, Ta decreases with decreased 

intracellular Ca2+. 

 

Secondly, we model the release experiment, in 

which the intracellular Ca2+ is maintained with a 

constant level (30µMol), and the myocyte is stretched to 

1.005 within 10ms, then held with fi length at a stretch 

ratio until 1000ms, and then allowed to contract with a 

constant contraction velocity within 5ms to return to its 

rest length, or λ = 1.0. Finally, the myocyte is held at a 

constant stretch ratio of 1.0 until 2000ms. Figure 4.7 

shows the time course of active tension during all of the 

release experiments. From fi   4.7, we can see that the 

active tension increases quickly in the beginning because 

of the change in stretch ratio from 1 to 1.005 in 10ms, 

and that later it decreases since the stretch is fixed at a 

constant value, gradually reaching a steady state with an 

active tension of 37kPa. From 1000ms to 1005 ms, the 

myocyte shortens to its rest length, because the active 

tension is velocity dependent. Thus, it decreases with a 

minimum value of 33kPa. After 1005ms, since the 

stretch ratio is fi again, the active tension recovers to a 

higher level and reaches a steady state after 1500ms, with 

the final active tension being around 36.5kPa. 

 

We examine the isometric contraction of the 

cardiac muscle at different stretch ratios: 0.90, 1.00, 1.10 

and 1.20, using the intracellular calcium transients 

described in fi 4.8(a). Figure 4.8(b) shows the 

corresponding active tensions developed at the diff t 

stretch ratios. Active tension developed in the muscle 

increases steadily as Ca2+ transient increases up to the 

peak tensions of 10kPa, 50kPa, 120kPa and 170kPa at 

different stretch ratios: 0.90, 1.00, 1.10 and 1.20 

respectively. However, the Ca2+ transient reaches peak 

at 0.6µM , which is higher than the amount required for 

achieving the highest peak tension at 1.2 stretch ratios of 

0.55µM Ca2+ transient. 

 

We then examine the isometric behavior of the 

tension developed in the muscle due to variation of the 

intracellular calcium profit at different stretch ratios. The 

intracellular Ca2+ varies with diff t values of the stretch. 

In this case, we were able to establish the effects of 

stretch ratios and Ca2+ on the tension developed in the 

muscle as shown in fi4.9. The tension developed at the 

stretch ratio of 0.9 is 20kPa, while the tension developed 

at 1.0 stretch ratios is 30kPa. In addition, the tension 

developed at stretch ratio of 1.1 and 1.2 are 40kPa and 

50kPa respectively. It is observed in fi 4.9 that a higher 

stretch ratio contributes to the development of high 

active tension in the muscle. Moreover, the active 

tension increases steadily, initially with increased 

intracellular calcium at diff t stretch ratios up to specific 

peak values. 

  

 

 

 
 

 

Figure 8: Isometric contraction of the cardiac 

muscle at different stretch ratios: 0.90, 1.00, 1.10 and 

1.20. 
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Figure 9: The relationship between the level of Ca2+ and 

the tension formed in the cardiac muscles during active 

contraction at different sarcomere lengths. 

  

8. Further Parameter Sensitivity Study 

Tables 1 illustrates the data used for studying 

sensitivity of diff t parameters in the myocyte model. 

 

Table 1: Selected parameters for a Intact Myocyte 

 
 

 

β0  Parameters 

 

Table 1: Effects of β0 on peak active tension with 

stretch ratio 1.0. 

 
 

The β0 is a length-dependent parameter which 

represents the change in maximal tension, based on the 

changes in fi   ent overlap. The isometric active 

contraction with fi   stretch ratio 1.0 is studied in intact 

myocyte cells, with reference to variation of the β0 

parameters and its respective effect on the tension 

developed in the muscle. For β0, in fi 4.10, the left side 

being active tension from β0 = minvalue, which is 1.15, 

and the right side being β0 = maxvalue, which is 4.6. 

With increased β0, the peak active values of tension 

developed in the muscle remains constant. Based on 

these results, for intact myocyte cells, the value of the 

maximum tension attained remains constant at all levels 

of β0 parameter (i.e., it does not affect peak tension 

since in the simulation the length is fi    for isotonic 

tension experiments). 

 

β1  Parameters 

The β1 is a length-dependent parameter, which 

captures the change in calcium sensitivity. The isometric 

active contraction, with fi stretch ratio 1.0, is studied in 

intact myocyte cells, with reference to the variation of the 

β1 parameters and its respective effect on the tension 

developed in the muscle. For β1, in fi      4.11, the left 

side being active tension from β1 = minvalue, which is -

1.2, and the right side being β0 = maxvalue, which is -4.8. 

With increased β1, the peak active values of tension 

developed in the muscle remains constant. Based on 

these results, for intact myocyte cells, the value of the 

maximum tension attained remains constant at all levels 

of the β1 parameter (i.e., it does not affect peak tension 

since in the simulation the length is fi for isotonic tension 

experiments). 

  

 

 
 

 

Figure 10: Effects of β0 on active tension development 

with stretch ratio 1.0, (a) β0 = 1.15; (b) β0 = 4.6. The 

prescribed calcium profi are same for all simulations, as 

shown in fi       4.6(a). 

  

Table 2: Effects of β1 on peak active tension with stretch 

ratio 1.0 

 

 
 

[Ca
2+

]T50  Parameter 

We studied the isometric behavior of the 

[Ca2+]T50 and how it influences the amount of tension 

generated in cardiac muscles. The effects of [Ca2+]T50 

on the tension developed in the muscle depends on the 

amount of stretch ratio 1.0. The tension developed in 
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the muscle increased initially with an decrease of the 

[Ca2+]T50 parameter profile The isometric effects of 

the [Ca2+]T50 on the tension developed in the cardiac 

muscle is presented in fi 4.12(a) and 4.12(b). On the 

right side is the active tension developed at 

[Ca2+]T50=0.40 on a stretch ratio of 1.0. The maximum 

tension achieved at this [Ca2+]T50 level is 115kPa. The 

sub-figure on the right represents the tension developed 

in the in- tact myocyte at 1.61 µM of [Ca2+]T50. The 

maximum tension developed at this calcium [Ca2+]T50 

is 0.9kPa on a stretch ratio of 1.0. Based on these results, 

for an intact myocyte cells, the value of the peak active 

tension decreases with increased [Ca2+]T50 parameter 

on a stretch ratio of 1.0. 

 

Table 3: Effects of [Ca2+]T50 on peak active 

tension with stretch ratio 1.0 

 
 

 
 

Figure 11: Effects of β1 on active tension development 

with a stretch ratio 1.0, (a) β1 = −1.2; (b) β1 = −4.8. The 

prescribed calcium profile are the same for all 

simulations, as shown in Fig. 6(a).  

 

 
Figure 12: Effects of [Ca2+]T50 on active tension 

development with stretch ratio 1.0, (a) [Ca2+]T50 = 0.40; 

(b) [Ca2+]T50 = 1.61. The prescribed calcium profi are 

the same for all simulations, as shown in fi      4.6(a). 

  

Table 4: Effects of Tref on peak active tension with 

stretch ratio 1.0 

 
 

Tref Parameter 

We examined the isometric effects of the Tref 

parameter on the tension developed in the intact 

myocyte cells. Figure 4.13 contains two subfigures that 

illustrate the effects of the Tref parameter on the tension 

developed in the muscle. We observe that the maximum 

active tension achieved is 60.25kPa for the intact 

myocyte at Tref=25, based on the sub-figure on the left 

side. On the other hand, the sub-figure on the right 

shows that the peak active tension is 100.5 kPa when the 

Tref is 240kPa. The peak active tension increases with 

increased Tref parameter in the intact myocyte. Based 

on these results, the peak active tension increases with 

an increased Tref parameter in the intact myocyte with 

stretch ratio of 1.0. 

 

TRPN50 Parameter 

 

Table 5: Effects of TRPN50 on peak active tension 

with stretch ratio 1.0 

 
 

 

 
 

 

Figure 13: Effects of Tref on active tension development 

with stretch ratio 1.0, (a) Tref = 60.25; (b) Tref = 240. 
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The prescribed calcium profile is same for all 

simulations, as shown in Fig. 6(a). 

 

We studied the effects of the TRPN50 parameter 

on the tension developed in the cardiac muscle, 

examining the parametric behavior of the tension by 

varying the TRPN50 parameter at stretch ratio 1.0. 

According to sub-figures 4.14(a) and 4.14(b), the tension 

developed in the muscle increased initially with a 

decrease in the TRPN50 parameter profi Based on 

these results, for intact myocyte cells, the value of the 

peak active tension decreases with increased TRPN50 

parameter on a stretch ratio of 1.0. 

 

  

 
 

Figure 14: Effects of TRPN50 on active tension 

development with stretch ratio 1.0, (a) TRPN 50 = 0.18; 

(b) TRPN 50 = 0.7. The prescribed calcium profile is 

the same for all simulations, as shown in Fig. 6(a). 

  

9. Functionality and Limitations of the Model 

The Land model used in this study is able to closely 

reproduce the saturating value of the force (tension) for 

corresponding sarcomere lengths. However, there are 

some differences between simulated and experimental 

data in sensitivity to an external Ca2+, as simulated force 

saturates at lower values of Ca2+ concentrations. Such 

diff are due to a decrease in Ca2+ sensitivity of 

skinned compared to intact cardiac cells. In addition, the 

current model can reproduce a shift in Ca2+ sensitivity 

for steady-state force-calcium relationships shown for 

diff t sarcomere lengths (see fi 4.9). Such a shift is seen 

in normalized steady-state force-calcium relationships. 

Simulations show that an increase in sarcomere length 

leads to smaller half-saturation values of Ca2+ 

concentrations, demonstrating an increase in Ca2+ 

sensitivity (see Fig. 6). A similar shift in Ca2+ sensitivity 

was also observed experimentally for mouse cardiac cells. 

 

The model of cardiac myocyte contraction also has 

some limitations due to the simplify of the biophysical 

mechanism of contraction. Specifically, the model uses 

a simplified description of the relationships between 

contraction force and cellular shortening in the form of 

Hooks law, while the real dependence is more 

complicated. It does not describe the effects of cellular 

shortening on Ca2+ transients, as does the Land model. 

However, this effect is relatively small. Also this model, 

as with most other models, did not take into account 

intracellular spatial in-homogeneities of Ca2+ 

concentration and cross-bridges binding sites. 

 

3 Conclusion 

This project focused on studying mathematical 

models of the cardiac myocyte’s active contraction. 

Various models have been developed based on existing 

studies and various concepts about the functionality of 

the cardiac muscle in humans [10]. The functionality of 

the heart is enabled by the cardiac muscles that contract 

to promote the ow of blood to deferent parts of the body.  

In this work, we worked on mathematical 

modelling of myocyte by using the Land model, which 

was developed based on real experimentation. The 

mathematical models simulated in this project were 

based on the existing models in the Land model.  

The limitations of the Land model use include: 

1) a simplified description of the relationships between 

the contraction force and the cellular shortening in the 

form of Hooks law, while the real dependence is more 

complicated. 2) a lack of description of the effects of 

cellular shortening on Ca2+ transients, as with the Land 

model, although this effect is relatively small. Last but 

not the least, this model, like most others, does not take 

into account intracellular spatial in-homogeneities of 

Ca2+ concentration and crossbridge binding sites. 

The main objective was then directed to the 

study of the Land model, which we used to simulate the 

contraction of real human myocytes. By using this model, 

we successfully simulated myocyte contraction for 

deferent scenarios, such as in isometric tension and 

isotonic tension. We found that with increased stretch, 

the peak active tension increases, in line with well-

established length-dependent tension generation. Five 

parameters were selected: [Ca2+]T50, Tref, TRPN50, 

_0 and _1. Each parameter was varied between -50% to 

100%, in order to examine the isometric effects of each 

parameter on the behavior of the tension developed in 

the intact myocyte cells, with the most sensitive 

parameter being [Ca2+]T50. In conclusion, it was found 

that the Land model provides a good platform for the 

analysis of the active contraction of the human cardiac 

myocyte. 
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